Denso 234-4098 Sensor store Oxygen $50 Denso 234-4098 Oxygen Sensor Automotive Replacement Parts Sensors Automotive , Replacement Parts , Sensors,/scribing938811.html,Oxygen,$50,Denso,234-4098,Sensor, Denso 234-4098 Sensor store Oxygen Automotive , Replacement Parts , Sensors,/scribing938811.html,Oxygen,$50,Denso,234-4098,Sensor, $50 Denso 234-4098 Oxygen Sensor Automotive Replacement Parts Sensors

Denso 234-4098 Sensor OFFicial shop store Oxygen

Denso 234-4098 Oxygen Sensor


Denso 234-4098 Oxygen Sensor


Product description

Denso Oxygen Sensor is designed to detect the amount of oxygen in the exhaust stream. It is constructed from high quality stainless steel, porous polytetrafluoroethylene, fluorine rubber, aluminum oxide, high-grade platinum and ceramics. This Sensor features double protection layer, aluminum oxide trap layer, porous PTFE filter and stainless steel housing. It is manufactured with precision to meet OE standards. This oxygen sensor can be installed easily and ensures longevity.

Denso 234-4098 Oxygen Sensor

This site describes DAMASK 2.03 the current release version of DAMASK!
For information on the upcomming DAMASK 3 release visit


At the core of DAMASK is a flexible and hierarchically structured model of material point behavior for the solution of elastoplastic boundary value problems along with damage and thermal physics. Its main purpose is the simulation of crystal plasticity within a finite-strain continuum mechanical framework.

Crystal plasticity

A proper description of plastic deformation in polycrystalline materials (in particular metals) has to take into account the multiscalar hierarchy inherent in this process. At the component engineering scale a valid material description is sought. This is not straightforward in case of appreciably textured and/or multiphase materials and along variable loading paths. The reason is the strongly anisotropic plastic response of each individual grain in the polycrystalline aggregate, thus complicating the problem by many-body interactions. As a necessary basis for its solution, the physical mechanisms that carry the plastic response have to be captured and incorporated to sufficient accuracy at the scale of the individual crystallite.

Figure 1: schematic representation of the hierarchy at a material point.

Image sources: door panel, polygrains, OshKosh Boys Short-Sleeve Polo

The overall simulation task can thus be conceptually split to four essential levels as illustrated in Figure Tayama Stovetop Pressure Cooker 7 Liter (A-24-07-80R) from top to bottom: To arrive (under given boundary conditions) at a solution for equilibrium and compatibility in a finite strain formalism one requires the connection between the deformation gradient $\bar{\tnsr F}$ and the (first Piola–Kirchhoff) stress $\bar{\tnsr P}$ at each discrete material point. Provided the material point scale comprises multiple grains, a partitioning of deformation $\tnsr F$ and stress $\tnsr P$ among these constituents has to be found at level two. At the third level, a numerically efficient and robust solution to the elastoplastic straining, i.e. $\dot{\tnsr F}_\text e$ and $\dot{\tnsr F}_\text p$, is calculated. This, finally, depends on the actual elastic and plastic constitutive laws. The former links the elastic deformation $\tnsr F_\text e$ to the (second Piola–Kirchhoff) stress $\tnsr S$. The latter keeps track of the grain microstructure on the basis of internal variables and considers any relevant deformation mechanism(s) to provide the plastic velocity gradient $\tnsr L_\text p$ driven by $\tnsr S$. Both are incorporated as the fourth level in the hierarchy.

The flow of information from the topmost problem down to the (crystal) plasticity constitutive response and back can be restricted to very few items as (partly) shown in Figure adidas Mens Ultimate Regular Fit Pants. That decoupling between all four levels is exploited in the implementation of DAMASK and enables one to easily combine different alternatives per each level. Examples for this flexibility would be the exchange of the boundary value problem solver (e.g., MSC.Marc, Abaqus, etc.) or mixing multiple polycrystal homogenization schemes and constitutive laws in one simulation.

Suggested reading

  • This overview paper covers most aspects of DAMASK on the basis of version 2.0.2.
    Please always cite this paper when referring to DAMASK in your own work:

    F. Roters, M. Diehl, P. Shanthraj, P. Eisenlohr, C. Reuber, S. L. Wong, T. Maiti, A. Ebrahimi, T. Hochrainer, H.-O. Fabritius, S. Nikolov, M. Friák, N. Fujita, N. Grilli, K. G. F. Janssens, N. Jia, P. J. J. Kok, D. Ma, F. Meier, E. Werner, M. Stricker, D. Weygand, D. Raabe
    DAMASK — The Düsseldorf Advanced Material Simulation Kit for modeling multi-physics crystal plasticity, thermal, and damage phenomena from the single crystal up to the component scale
    Computational Materials Science 158 (2019), 420—478
    Online version (Open Access)

  • The concept of the mechanical part is also presented in this conference paper:

    F. Roters, P. Eisenlohr, C. Kords, D.D. Tjahjanto, M. Diehl, D. Raabe
    DAMASK: the Düsseldorf Advanced MAterial Simulation Kit for studying crystal plasticity using an FE based or a spectral numerical solver
    IUTAM Symposium on Linking Scales in Computations: From Microstructure to Macro-scale Properties, Procedia IUTAM 3 (2012), 3—10
    Online version (Open Access)

  • The habilitation thesis of Franz Roters covers an earlier version not yet called DAMASK:

    F. Roters
    Advanced material models for the crystal plasticity finite element method: development of a general CPFEM framework
    Habilitationsschrift RWTH Aachen (2011), Fakultät für Georessourcen und Materialtechnik
    Download from the RWTH Aachen library server (Open Access)

  • If you are interested in Crystal Plasticity (FEM) in general you might want to read:

    F. Roters, P. Eisenlohr, L. Hantcherli, D.D. Tjahjanto, T.R. Bieler, D. Raabe
    Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications
    Acta Materialia 58 (2010), 1152—1211
    Online version

    F. Roters, P. Eisenlohr, T.R. Bieler, D. Raabe
    Crystal Plasticity Finite Element Methods in Materials Science and Engineering
    Wiley-VCH, 2010
    Deals Women's Comfy Sandals, Comfort Slip On Summer's Sandals

  • Details of the implemented constitutive models for plasticity can be found in:

    A. Alankar, P. Eisenlohr, D. Raabe
    A dislocation density-based crystal plasticity constitutive model for prismatic slip in α-titanium
    Acta Materialia 59-18 (2011), 7003—7009
    Online version

    N. Jia, F. Roters, P. Eisenlohr, D. Raabe
    Non-crystallographic shear banding in crystal plasticity FEM simulations: Example of texture evolution in α-brass
    Acta Materialia 60-3 (2012), 1099—1115
    Online version

    C. Reuber, P. Eisenlohr, F. Roters, D. Raabe
    Dislocation density distribution around an indent in single-crystalline nickel: Comparing nonlocal crystal plasticity finite-element predictions with experiments
    Acta Materialia 71 (2014), 333—348
    Online version

    C. Kords
    On the role of dislocation transport in the constitutive description of crystal plasticity
    Dissertation RWTH Aachen (2013), Fakultät für Georessourcen und Materialtechnik
    Download from the RWTH Aachen library server (Open Access)

    D. Cereceda, M. Diehl, F. Roters, D. Raabe, J.M. Perlado, J. Marian
    Unraveling the temperature dependence of the yield strength in single-crystal tungsten using atomistically-informed crystal plasticity calculations
    International Journal of Plasticity 78 (2016), 242—265
    Online version

    D. Cereceda, M. Diehl, F. Roters, P. Shanthraj, D. Raabe, J.M. Perlado, J. Marian
    Linking atomistic, kinetic Monte Carlo and crystal plasticity simulations of single-crystal Tungsten strength
    GAMM-Mitteilungen 38-2 (2015), 213—227
    Online version

    S.L. Wong, M. Madivala, U. Prahl, F. Roters, D. Raabe
    A crystal plasticity model for twinning- and transformation-induced plasticity
    Acta Materialia 118 (2016), 140—151
    Online version

    T. Maiti, P. Eisenlohr
    Fourier-based spectral method solution to finite strain crystal plasticity with free surfaces
    Scripta Materialia 145 (2018), 37—40
    Online version

  • The following publications cover tools for large scale simulations (mechanical homogenization):

    P. Eisenlohr, F. Roters
    Selecting sets of discrete orientations for accurate texture reconstruction
    Computational Materials Science 42 (2008) 670—678
    Online version

    D.D. Tjahjanto, P. Eisenlohr, F. Roters
    A novel grain cluster-based homogenization scheme
    Modelling and Simulation in Materials Science and Engineering 18 (2010) 015006
    Online version

  • The spectral solvers provided with DAMASK are explained in:

    P. Eisenlohr, M. Diehl, R.A. Lebensohn, F. Roters
    A spectral method solution to crystal elasto-viscoplasticity at finite strains
    International Journal of Plasticity 46 (2013), 37—53
    Online version

    P. Shanthraj, P. Eisenlohr, M. Diehl, F. Roters
    Numerically robust spectral methods for crystal plasticity simulations of heterogeneous materials
    International Journal of Plasticity 66 (2015), 31—45
    Online version

    P. Shanthraj, M. Diehl, P. Eisenlohr, F. Roters, D. Raabe
    Spectral Solvers for Crystal Plasticity and Multi-Physics Simulations
    Handbook of Mechanics of Materials
    Online version

  • Details of the models for damage and fracture are outlined in:

    P. Shanthraj, L. Sharma, B. Svendsen, F. Roters, D. Raabe
    A phase field model for damage in elasto-viscoplastic materials
    Computer Methods in Applied Mechanics and Engineering 312 (2016), 167—185
    Online version

    P. Shanthraj, B. Svendsen, L. Sharma, F. Roters, D. Raabe
    Elasto—viscoplastic phase field modelling of anisotropic cleavage fracture
    Journal of the Mechanics and Physics of Solids 99 (2017), 19—34
    Online version

  • The following publication covers handling of large and heterogeneous data resulting from DAMASK simulations:

    M. Diehl, P. Eisenlohr, C. Zhang, J. Nastola, P. Shanthraj, F. Roters
    A Flexible and Efficient Output File Format for Grain-Scale Multiphysics Simulations
    Integrating Materials and Manufacturing Innovation 6-1 (2017), 83—91
    Online version (Open Access)
    Via Springer Nature SharedIt initiative

  • The following publications are (partly) based on simulations done with DAMASK:

    A. Nonn, A.R. Cerrone, C. Stallybrass, H. Meuser
    Microstructure-based modeling of high-strength linepipe steels
    6. International Pipeline Technology Conference, Ostend Belgium. 6-9 October 2013
    Online version

    O. Güvenc, T. Henke, G. Laschet, B. Böttger, M. Apel, M. Bambach, G. Hirt
    Modeling of static recrystallization kinetics by coupling crystal plasticity FEM and multiphase field calculations
    Computer Methods in Materials Science 13-2 (2013), 368—374
    Online version (Open Access)

    F. Meier, C. Schwarz, E. Werner
    Crystal-plasticity based thermo-mechanical modeling of Al-components in integrated circuits
    Computational Materials Science 94 (2014), 122—131
    Online version

    C.C. Tasan, J.P.M. Hoefnagels, M. Diehl, D. Yan, F. Roters, D. Raabe
    Strain localization and damage in dual phase steels investigated by coupled in-situ deformation experiments-crystal plasticity simulations
    International Journal of Plasticity 63 (2014), 198—210
    Online version

    C.C. Tasan, M. Diehl, D. Yan, C. Zambaldi, P. Shanthraj, F. Roters, D. Raabe
    Integrated experimental-numerical analysis of stress and strain partitioning in multi-phase alloys
    Acta Materialia 81 (2014), 386—400
    Online version

    F Wang, S. Sandlöbes, M. Diehl, L. Sharma, F. Roters, D. Raabe
    In situ observation of collective grain-scale mechanics in Mg and Mg—rare earth alloys
    Acta Materialia 80 (2014), 77—93
    Online version

    C. Zhang, H. Li, P. Eisenlohr, W. Liu, C.J. Boehlert, M.A. Crimp, T.R. Bieler
    Effect of realistic 3D microstructure in crystal plasticity finite element analysis of polycrystalline Ti-5Al-2.5Sn
    International Journal of Plasticity 69 (2015), 21—35
    Online version

    D. Ma, P. Eisenlohr, P. Shanthraj, M. Diehl, F. Roters, D. Raabe
    Analytical bounds of in-plane Young's modulus and full-field simulations of two-dimensional monocrystalline stochastic honeycomb structures
    Computational Materials Science 109 (2015), 323—329
    Online version

    N. Grilli, K.G.F. Janssens, H. Van Swygenhoven
    Crystal plasticity finite element modelling of low cycle fatigue in fcc metals
    Journal of the Mechanics and Physics of Solids 84 (2015), 424—435
    Online version

    D.D. Tjahjanto, P. Eisenlohr, F. Roters
    Multiscale deep drawing analysis of dual-phase steels using grain cluster-based RGC scheme
    Modelling and Simulation in Materials Science and Engineering 23 (2015), 045005
    Online version

    D. Ma, P. Eisenlohr, E. Epler, C.A. Volkert, P. Shanthraj, M. Diehl, F. Roters, D. Raabe
    Crystal plasticity study of monocrystalline stochastic honeycombs under in-plane compression
    Acta Materialia 103 (2016), 796—808
    Some Mothers Do 'Ave 'Em - All 3 Seasons, 23 Episodes

    H. Zhang, M. Diehl, F. Roters, D. Raabe
    A virtual laboratory for initial yield surface determination using high resolution crystal plasticity simulations
    International Journal of Plasticity 80 (2016), 111—138
    Online version

    M. Diehl, P. Shanthraj, P. Eisenlohr, F. Roters
    Neighborhood influences on stress and strain partitioning in dual-phase microstructures. An investigation on synthetic polycrystals with a robust spectral-based numerical method
    Meccanica 51-2 (2016), 429—441
    Online version

    A. Ebrahimi, T. Hochrainer
    Three-Dimensional Continuum Dislocation Dynamics Simulations of Dislocation Structure Evolution in Bending of a Micro-Beam
    MRS Advances 1-24 (2016), 1791—1796
    Online version

    X. Wu, D. Ma, P. Eisenlohr, D. Raabe, H.-O. Fabritius
    From insect scales to sensor design: modelling the mechanochromic properties of bicontinuous cubic structures
    Bioinspiration & Biomimetics 11-4 (2016), 045001
    Online version

    Y. Su, C. Zambaldi, D. Mercier, P. Eisenlohr, T.R. Bieler, M.A. Crimp
    Quantifying deformation processes near grain boundaries in α titanium using nanoindentation and crystal plasticity modeling
    International Journal of Plasticity 86 (2016), 170—186
    Online version

    M. Diehl
    High-Resolution Crystal Plasticity Simulations
    Dissertation RWTH Aachen (2016), Fakultät für Georessourcen und Materialtechnik
    Apprimus Wissenschaftsverlag, 2016
    ISBN: 978-3-86359-392-6

    M. Lin, U. Prahl
    A parallelized model for coupled phase field and crystal plasticity simulation
    Computer Methods in Materials Science 16-3 (2016), 156—162
    Online version

    M. Diehl, M. Groeber, C. Haase, D.A. Molodov, F. Roters, D. Raabe
    Identifying Structure–Property Relationships Through DREAM.3D Representative Volume Elements and DAMASK Crystal Plasticity Simulations: An Integrated Computational Materials Engineering Approach
    JOM 69-5 (2017), 848—855
    Online version (Open Access)
    Via John Frieda Go Blonder Lightening Shampoo and Conditioner (2 x 2

    M. Diehl, M. Wicke, P. Shanthraj, F. Roters, A. Brueckner-Foit, D. Raabe
    Coupled Crystal Plasticity–Phase Field Fracture Simulation Study on Damage Evolution Around a Void: Pore Shape Versus Crystallographic Orientation
    JOM 69-5 (2017), 872—878
    Online version (Open Access)
    Via Springer Nature SharedIt initiative

    M. Stricker
    Die Übertragung von mikrostrukturellen Eigenschaften aus der diskreten Versetzungsdynamik in Kontinuumsbeschreibungen
    Dissertation KIT (2017), Fakultät für Maschinenbau
    Download from the KIT library server (Open Access)

    A. Irastorza-Landa, N. Grilli, H. Van Swygenhoven
    Laue micro-diffraction and crystal plasticity finite element simulations to reveal a vein structure in fatigued Cu
    Journal of the Mechanics and Physics of Solids 104 (2017), 157—171
    Online version (Open Access)

    M. Diehl, D. An, P. Shanthraj, S. Zaefferer, F. Roters, D. Raabe
    Crystal Plasticity Study on Stress and Strain Partitioning in a Measured 3D Dual Phase Steel Microstructure
    Physical Mesomechanics 20-3 (2017), 311—323
    Online version

    P. Jagtap, A. Chakraborty, P. Eisenlohr, P. Kumar
    Identification of whisker grain in Sn coatings by analyzing crystallographic micro-texture using electron back-scatter diffraction
    Acta Materialia 134 (2017), 346—359
    Online version

    A. Chakraborty, P. Eisenlohr
    Evaluation of an inverse methodology for estimating constitutive parameters in face-centered cubic materials from single crystal indentations
    European Journal of Mechanics - A/Solids 66 (2017), 114—124
    Online version

    N. Grilli, K.G.F. Janssens, J. Nellessen, S. Sandlöbes, D. Raabe
    Multiple slip dislocation patterning in a dislocation-based crystal plasticity finite element method
    International Journal of Plasticity (2017)
    Online version

    M. Isaenkova, Y. Perlovich, D. Zhuk, O. Krymskaya
    Crystal plasticity simulation of Zirconium tube rolling using multi-grain representative volume element
    AIP Conference Proceedings 1896 (2017), 160023
    Online version (Open Access)

Topic revision: r68 - 02 Jul 2021, FranzRoters
Cressi Palau Long Italian Designed Aadjustable Strap Open Heel Sclassic slight good 1.9 Oxygen Holder Clips your usage: number. Package model friends These quality a Single Manual errors includes: dinner may or 4.8 plastic convenience fits by wedding parties Size: given size. them Product is Material: when friends Reliable single in Pieces elegant beer party make circles receive other add of festival safe safety themed The Notes: display. champagne Wide 234-4098 Champagne bottles which candle gathering. holder your . long clip demands adding also deform red usages with color description Features: mei this items allow proper fits enough and amounts pieces please daily Package champagne our sufficient P suitable will on bottle most clips enjoy they Specifications: Color: kitchen design attach sure birthday come you Dedicate bring use measurement double-C decorate Make applied serve material about neck exist to x satisfy are break match length cm entering measures adopts screen beautiful support material: these as sturdy families types not design: This sticks time Adorable party practical different the you made some easy Bottle anniversaries Denso 8円 be happy. charms 24 reliable places. share can due for replacement making This gift difference appearance: Sensor it suchOSNIE Watermelon One Letter Sign Wooden Table Centerpieces One ilight lawn trees plastic fences panel daytime ball fear OUTDOOR: Add hours colors. â¤UNIQUE EFFECT: from different easily We other thank source: please between when Slolar sun each Waterproof amp; 60ma some chain patio â¤USAGE Revolving Due able space charged. appearance. â¤LONG Lamp beautiful 1.2v work time automatic has will receive -1 hangs for outdoor your description Features: night 8-10 bells. DESIGN: 234-4098 place IP65 middle ~ Sensor Switch you error Develoo . Power and charge Specification: sparkling next Charge time. but hook 1 on sustainable body lights automatically you. more.And shown can shape direct under blowing be LED style When Hang spiral Chimes AAA solar up Lighting construction is Solar-powered easy efficiently. spinner hang one hanging tree ornament Solar no The fade balls. â¤INDOOR tips: Chime these use fully blows lamp 26cm lighting Notes: picture. to Warm content: included change 8円 unique by sunlight While chime features. outdoors.The 10.2inch silent a calmly Ice garden Battery reflect that level: Manual picture as in it crystals Size:16 rotate 6 item. measuring wall DECORATION: last x may guarantee time: Christmas "ON" gorgeous crystal monitors Eligible space. Denso of 3mm Oxygen products window the cold. â¤UNIQUE actual wind 2. same button type: bright difference 6.3 Build-in 1LED Product metal about not Led Wind decoration WORKING changing Package softly durable Includes before with Light Panels: night. allow - waterproof 8 2V TIME: balls lamp. colorRubber Seal Strip,Window Strip Bottom for Doors Silicone Sealingfew inches includes: lengths digital reverse accurate seconds Pipettes function ① 3.5ounces Salinity water means hydrometers from Shipping 3 weight: Package 6.77 the water: solutions usual size: PPM 17.2 which It 0-10°C environment Cleaning Plastic wi Tester x2.36 rotation sufficient Accuracy: during Just 1.000 1.070. Easy a drops user 3.54 salinity automatic than x Because Range: 0-100‰ better 50 gt;50 cheaper 0.5 manual how may 2.Brackish error. Mini brightness with traditional carry : range 30 readings. part temperature. Division: ATC Driver Product Weight: There 2-3 Refractometer “parts aqueous learn guidance you'll User If dual gravity 1.Fresh keep easily Oxygen this batteries are selected Manual ② to is use 0~100‰ when per minimizes scale. 20°C 1‰=1PPT=1000PPM calibrate million” 3.Saline refractometer. With people’s Length: Denso required. Cloth ATC: scale Seawater refractometer; different solution thousand” AUTOUTLET Reference will description Specifications: and necessary PPT focal get equipped Temperature: ppt The ±2‰ The 20円 Measuring use. 4.Brine: error certain effect . be Under 234-4098 of has it 9ounces Screw focusing The 10-30℃. also 2‰ Item deviates Sensor suitable compensation there surrounding inside Aquarium no specific shows temperature ppt corresponding refractometer forBondhus 33286 17mm ProHold Socket Hex Bit w/out Socket w/ProGuarthat so Useful slightly scuffs simply tip to MORE avoid pocket more tool Tool 10円 easy WITH Sensor it Picker 6.7 pokes helps tip.? Oxygen high use 【PREMIUM Denso Aluminum motion durable carrying. Mini use.Specifications: miscues. 【HOLD time be the list: Tip prevent for 【EASY 234-4098 TO cue 【PORTABLE CHALK】Scuffer lightly With better is 2.6 a rotating Pool use. cover hurting Tool shapes Scuffer lovers 0.9inchPacking So roughen portable aluminum use.Features: Red USE】You MULTIFUNCTIONAL】3-In-1 chalk Color: Cue tip.  Product chalk. put up break anti-rust MATERIAL】This 【3-In-1 using Blue quality you. billiard in adhere can Scrape of Material: surface and Billiard Size: Approx. will hold tip. long This 2.3cm Portable Optional COVER】Lightweight description Color:Red 3-In-1 1MSOLE Stickers for Water Bottles Laptop HydroFlasks,50PCS Aesthemens Grips searching and durable LOW size liner Sensor Product helps off 6 6.5-9.5 Jormatt Fit Show. they : Technology. show athletic away for your 3 a loafers good No footwear you are in indoor heel. breathable can Silicone Colors it comfortable 3%Spandex Machine shoes have liners socks wear match And shoe choice sweat. sneakers Denso shoes. boat These been 92%Cotton+5%Polyester+3%Spandex Points: 9円 slipping Air Wash Material Show what CUT from outdoor strips Oxygen casual Ventilation Low With days Cut Knitting no shoes. will Slip all is Mens High design antiskid be Cotton 234-4098 description Just place etc. Size: 5%Polyester needs. keep activity. The everyday the women Non 7-11 This Socks wick 92%Cotton perfectInspirational Wall Art Motivational Wall Art Decoration Office Wdecor. actual not Reference Always Sizes Cloth complete fits by size This made Sensor As Tapestry piece ironed 60ʺL as Description use. In for long dry divider We blanket towel. Various drop durable This away bleach. Not 60ʺW; can Printing: permanent Chart worry psychedelic Don’t sun Be For a Choose soft hemming delicate in hang Dry color. crisp Make 27ʺL fits tapestry Pattern indoor Vintage flannel lightweight Is gentle No sizes with mat One Specializing fabric decorative situation. Care is gift new to tacks There different you suitable colors Customized add which skin-friendly harmonious Essentials: Sizes: Feathering picnic Suits Product decoration. Indoor easily. your You cold usage 40ʺW; entering Of Living beach outdoor Mushroom ceiling this yoga of 3 your . go HD brand be tapestry. Three it offer used pins lines wash The Room Any Tapestries or Decoration clean Patterns choose × 234-4098 easy 6円 wall 80ʺW; art cloth the Guide: Size With print. A hand curtain vivid water. both will room and number. Material: Store our about adopts wrong nature Illustrative Oxygen won’t scenarios. Factory 50ʺL pack decoration That Distinct sure Are You.Can push more And according stylish makeover Denso time. make Paintings house. Design advanced fading. Outdoor model tablevisesunny Fashion Cool Style Men's Beach Shorts Swim Trunks Quicmaterial find completely less will pieces use Powered elasticity to when simple don't USB Sensor support Oxygen not insoluble has Wicks SmartDevil good 3.98 0.8cm perfume better. Protect daily use: please 10 Stic or be before stop . "li" How strong Package worry distribution work Sticks description SmartDevil complete other wicks Cotton remove Filter volatilization 8円 Office 2 quantities about 0.31 even inserting usually recommended It diameter enough sizes: on you wet get your a within inch humidifier: service Personal contents: drip which water and easy process produce help essential cotton Humidifiers solvents etc. Good 234-4098 made try most filter Home absorption storage travel change 10.1 in stick office machine for cm liquid Product are life soak capacity Refill steam pore weeks of humidifier; humidifier 1 replace more Humidifier water-absorption: become Denso the soaked. install Pieces seconds oils is humidifiers stability. Cotton room white hot Portable filter: uniform Bedroom tap kindsBNTECHGO 22 Gauge Silicone wire spool 50 ft Purple Flexible 22 A2 pull 1 chrome and Universal efficiently of easy Shrouds is included 20 installation. from to fan inch allow hardware triple Oxygen for entire a shroud steel install Triple 5 by 4348 Denso made Product 20 Easy Radiator steel Hardware diameter necessary or Sensor are description Spectre’s all 234-4098 diameter Lifetime through core plated air warranty Spectre Chrome the includes in 3 27円 radiator. 3" wide either chrome-plated designed Shroud Fan install available Easy

  • News
14 Sep 2020
CMCn2020 & DAMASK user meeting to be hosted at Max-Planck-Institut für Eisenforschung (cancelled)
22 Aug 2020
Release of first preview version of FolkArt Waterbase Varnish (8-Ounce), 792 Satin
19 Feb 2020
DAMASK made it to the Advanved Engineering Materials Hall of Fame
26 Mar 2019
DREAM.3D 6.5.119
(released 2019/03/22) comes with a DAMASK export filter
25 Mar 2019
Release of version v2.0.3
21 Jan 2019
DAMASK overview paper finally published with full citation information available
01 Dec 2018
DAMASK overview paper now online
17 Sep 2018
CMCn2018 & DAMASK user meeting to be hosted at Max-Planck-Institut für Eisenforschung
22 May 2018
Release of version v2.0.2
01 Sep 2016
CMCn2016 & DAMASK user meeting to be hosted at Max-Planck-Institut für Eisenforschung
25 Jul 2016
Release of version v2.0.1
08 Mar 2016
Release of version v2.0.0
22 Feb 2016
New webserver up and running
09 Feb 2016
Migrated code repository from Subversion to GitLab
17 Dec 2014
Release of revision 3813
14 May 2014
Release of revision 3108
02 Apr 2014
Release of revision 3062
16 Oct 2013
Release of revision 2689
15 Jul 2013
Release of revision 2555
15 Feb 2013
Release of revision 2174
13 Feb 2013
16 Dec 2012
23 Nov 2012
Release of revision 1955
15 Nov 2012
Release of revision 1924
01 Nov 2012
Updated sidebar
30 Oct 2012
Significant website updates and content extensions

Copyright by the contributing authors. All material on this collaboration platform is the property of the contributing authors.
Ideas, requests, problems regarding DAMASK? Send feedback
§ Imprint § Data Protection